

Post-Menarchal Adolescent Girls Demonstrate Multi-Level Reproductive Axis Immaturity

Bob Z. Sun, BA^{1,2}; Tairmae Kangarloo, BS³; Judith M. Adams, RN, DMU³; Patrick M. Sluss, PhD³; Corrine K. Welt⁴; Donald W. Chandler, PhD⁵; David T. Zava, PhD⁶; John A. McGrath, MA⁷; David M. Umbach, PhD¹; Janet E. Hall, MD, MSc^{1,3}; and Natalie D. Shaw, MD, MMSc^{1,3}

¹National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC; ²Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; ³Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA; ⁴Department of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT; 5 Endocrine Sciences, Calabasas Hills, CA; 6 ZRT Laboratory, Beaverton, OR; ⁷Social & Scientific Systems, Inc., Durham, NC

Introduction

Irregular menstrual periods are very common in the first few years after menarche due to reproductive axis immaturity. While acquisition of estradiol positive feedback (E2+FB) has been proposed as the last step in reproductive development, even premenarchal girls have normal, spontaneous mid-cycle surges (MCS). We hypothesized that delayed maturation of other reproductive axis components explain menstrual irregularity in adolescent

Research Protocol

Participants

- 23 adolescent girls, 12.8 17.6 years old
- BMI percentile 41st 99th; 58% overweight/obese
- 0.4 3.5 years post-menarchal
- Normal thyroid, prolactin, and androgen levels
- No excessive exercise, eating disorders, or smoking

Measures

- Monitoring during 2 consecutive menstrual cycles
- Reproductive hormone measurements, each method 2-5x/wk:
- serum: LH, FSH, E2, progesterone [P], inhibin B [INHB]
- dried blood spots (DBS): LH, FSH
- dried urine strips: E2, pregnanediol [Pd]
- Pelvic ultrasounds to document follicle growth and ovulation

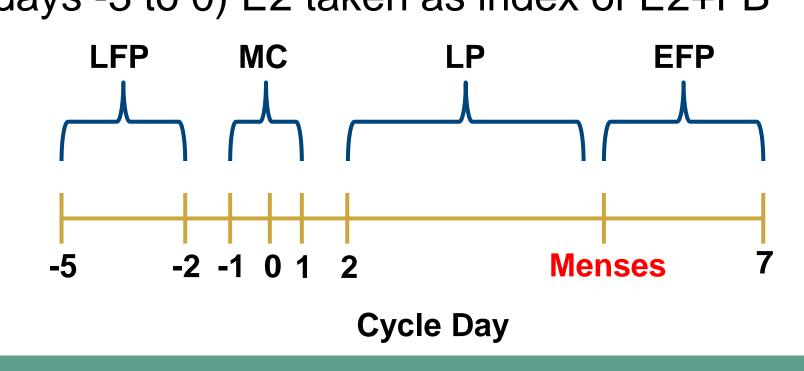
Statistical Methods

Standardization of Hormone Measurements

 Passing-Bablok regression to determine conversion from DBS (LH, FSH) and urine (E2) to serum

Menstrual Cycle Classification

- Short OV: ovulatory with short (<10d) luteal phase
- Normal OV: ovulatory with normal luteal phase length
- ANOV: anovulatory
 - ANOV cycles with luteinization (P > 1 ng/ml) and without luteinization combined for analyses


Hormone Dynamics by Cycle Phase

Cycle 1

- Late Follicular Phase (LFP)
 - Mid-cycle (MC) where midcycle surge = day 0
- Luteal Phase (LP)

Cycle 2

- Early Follicular Phase (EFP)
- Hormones compared between each adolescent subgroup and 65 ovulatory historic adult controls¹ using mixed models to account for repeated measures
- The mid-cycle LH surge adjusted for pre-ovulatory (days -3 to 0) E2 taken as index of E2+FB

Characteristics of Adolescent Groups ANOV ANOV (no Difference among Normal OV **Short OV** (luteinization) luteinization) groups, p-value* BMI percentile 79.8 ± 9.3 78.9 ± 5.7 88.7 ± 9.7 69.8 ± 28.8 Chronologic age (yrs) 0.48 14.8 ± 0.8 14.0 ± 0.3 14.1 ± 0.4 13.7 ± 0.1 Age at menarche (yrs) 12.6 ± 0.2 12.9 ± 0.3 12.3 ± 0.3 12.8 ± 0.1 0.68 Gynecologic age (yrs) 0.8 ± 0.04 1.9 ± 0.3 1.9 ± 0.5 1.8 ± 0.5 Cycle length (days) 39.4 ± 3.9 25.2 ± 1.1 38.8 ± 5.8 28.5 ± 8.5 0.11 Follicular phase length (days) 27.8 ± 4.0 17.4 ± 1.2 Luteal phase length (days) 11.6 ± 0.4 7.8 ± 0.8

 1.8 ± 0.5

 377.0 ± 81.5

 0.4 ± 0.2

 165.0 ± 35.0

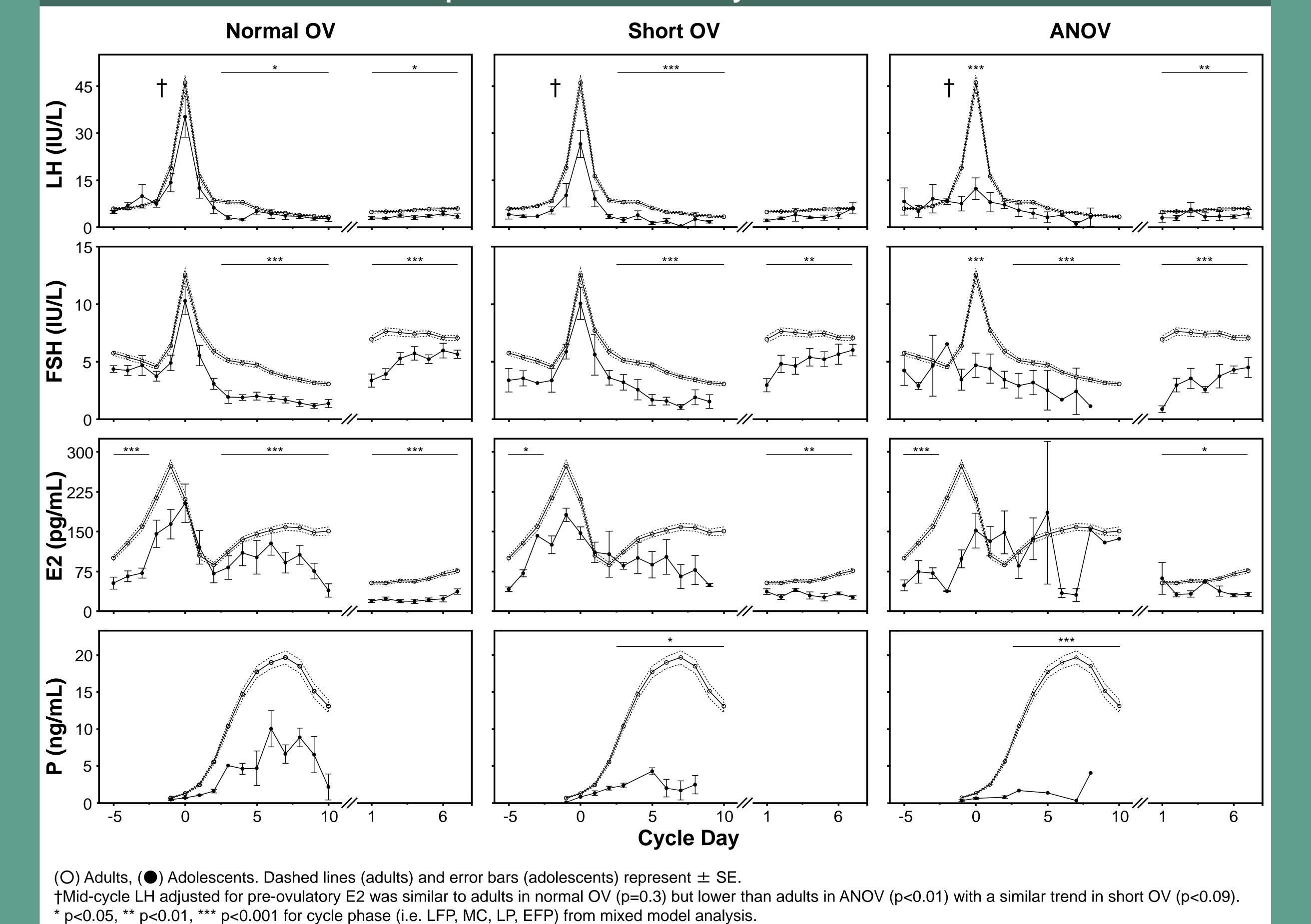
<u>--</u>†

(mcg/g Cr) All values presented as mean \pm SE.

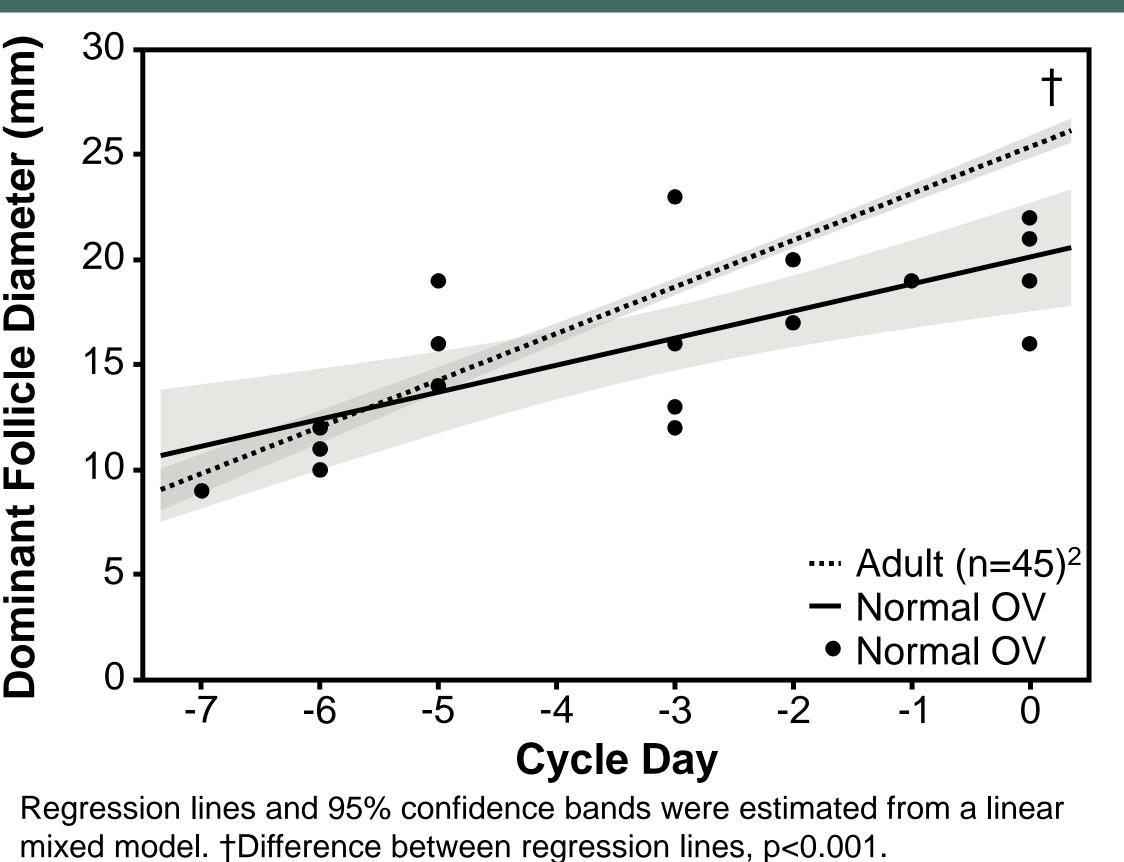
Peak serum progesterone

Peak urine pregnanediol

(ng/mL)

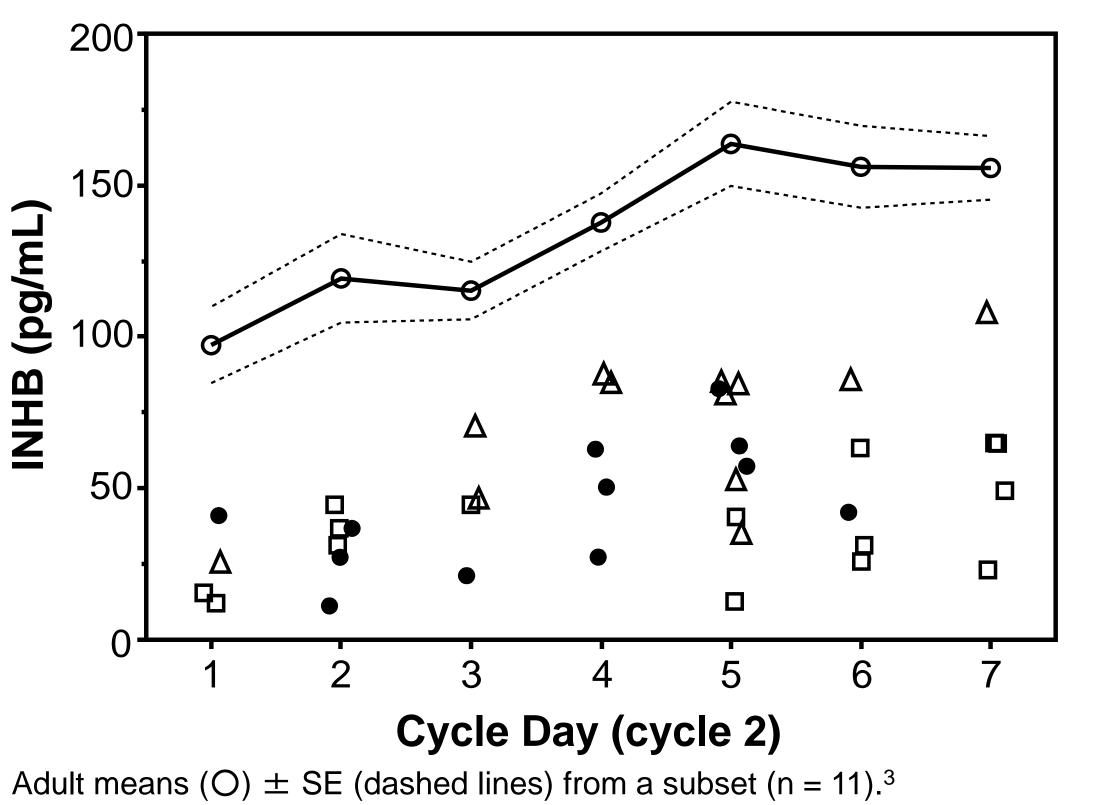

1276.7 ± 153.9

 7.1 ± 1.3


Adolescents Demonstrate Diminished LH and FSH Secretion and Luteal Insufficiency Compared with 65 Ovulatory Adult Women

 3.4 ± 0.4

 588.0 ± 89.0



Normal OV Adolescents Have Slower Follicular Growth Rates than Adults

individual data points for normal OV adolescents.

Early Follicular Phase INHB Levels are Lower in Adolescents than in Adults

Adolescent individual data points, normal OV (\bullet), short OV (Δ), or ANOV (\square). P<0.05 for all comparisons with adults after adjusting for FSH.

Conclusions

- E2+FB is intact in normal OV but remains impaired in short OV and ANOV girls
- Normal OV girls have immature FSH dynamics and follicle growth; they also show luteal insufficiency and decreased ovarian responsiveness to FSH
- These findings suggest the final stage of reproductive axis maturity entails coordinated development of brain and ovary
- . Taylor AE, Whitney H, Hall JE, Martin K, Crowley WF, Jr. JCEM 1995; 80:1541-1547.
- 2. Adams JM, Taylor AE, Crowley WF, Jr., Hall JE. JCEM 2004; 89:4343-
- 3. Welt CK, McNicholl DJ, Taylor AE, Hall JE. *JCEM* 1999; 84:105-111. Funding: NIH Z01-ES103315 (IRP), 1UL1TR001102, 1SI2ES025429-01.

^{*}ANOV girls with and without luteinization combined; †Used in definition of adolescent groups.